Adaptive green split optimization for traffic control with low penetration rate trajectory data

Abstract

Adaptive traffic signal control systems often rely on expensive physical detection infrastructure. However, with the advent of widespread trajectory data, it is now possible to implement adaptive control entirely avoiding such costs. We present two simple adaptive control policies which only require sample delay and number of stops, with the goal to mitigate the presence of oversaturation. The simplicity stems from the necessity of controlling under any trajectory penetration rate. The two policies differ on the possibilities of the control infrastructure to be implemented. The first one minimizes oversaturation by deviating from a reference pre-timed signal plan. This signal plan can be an existing one or an estimated one from aggregating trajectory data. The second policy creates first a set of green split plans to be then selected by a control logic. This second policy is intended to be used in SCATS-like systems where signal plans are limited to a pre-defined discrete set. We propose a plan selection logics or alternatively, the original plan selection policy can be used as well. Both policies are tested in the field, achieving a significant reduction in delay, oversaturation and spillover ratios. Lastly, we test an application of this policy as an enhancement of SCATS systems in the presence of malfunctioning physical detectors.

Publication
Journal of Intelligent Transportation Systems
Roger Lloret-Batlle
Roger Lloret-Batlle
Assistant Professor of Transportation and Logistics

Market Design, Container Terminal Operations, Urban Logistics, Statistics, Traffic Signal Control